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The paper presents a linear stability analysis of cohesionless granular materials 
during rapid shear flow. The analysis is based on the governing equations developed 
in the kinetic theory of Lun et al. (1984) for granular flows of smooth, nearly elastic, 
uniform spherical, particles. The primary flow is taken to be a uniform, simple shear 
flow and the effects of small perturbations in velocity components, granular 
temperature and solids fraction are considered. The inelasticity of the particles is 
characterized by a constant coefficient of restitution which is assumed to be close to 
unity. Some permissible solutions are sinusoidal plane waves in which the 
wavenumber vector is continuously turned by the mean shear flow and its magnitude 
varied as time proceeds. The initial growth (or decay) rates for these perturbations 
are sought. The resulting linearized equations for the flow perturbations turn out to 
be exceedingly long and complex; they are determined by the use of computer 
algebra. It is found that, in general, long wavelengths are the most unstable and that 
short wavelengths are dampened by ‘viscous action ’. ‘Instability ’ increases with 
decreasing coefficient of restitution. Numerical results for initial growth rates were 
obtained for several values of mean solids fraction and particle coefficient of 
restitution. Flows tend to be more stable a t  both high and very low concentrations 
than a t  moderate concentrations. These results appear to  be consistent in the main 
with recent computer simulations of granular flows of disk-like particles by Hopkins 
& Louge (1991). 

1. Introduction 
There are many scientific and technological problems that involve rapid 

deformations of granular materials made up of discrete particles. These include 
mineral, powder and ceramic processing, materials handling engineering, chemical 
engineering applications of fluidized particles, manufacture of pharmaceuticals, etc. 
as well as numerous geophysical flows such as rockfalls and avalanches, debris flows, 
pyroclastic flows, and pack-ice flows. Our present understanding of how these 
materials behave during flow is still fairly rudimentary compared to  that associated 
with more widely studied single-phase Newtonian and nowNewtonian fluids. 

During the past several years there has been considerable effort devoted to the 
determination of the constitutive behaviour of granular materials by considering the 
details of the flow at the microstructural level and examining individual particle 
interactions. Much of this work has dealt with rapid shear flow regimes in which the 
particle interactions were treated as nearly instantaneous collisions for the purposes 
of determining overall ‘ continuum ’ stresses, energy fluxes, energy dissipation? etc. 

The studies have been pursued by analytical approaches as well as by means of 
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computer simulations (see review papers by Savage 1983, 1984, 1989, 1991 ; Jenkins 
1987a, b ;  Campbell 1990). On the analytical front, the basic ideas of Bagnold (1954) 
have been extended in much more elaborate approaches patterned after the ‘hard- 
sphere ’ kinetic theories previously developed for dense gases and liquids (Savage & 
Jeffrey 1981; Shen & Ackerman 1982, 1984; Haff 1983, 1986; Jenkins & Savage 
1983; Lun et al. 1984; Jenkins & Richman 1985) and used to  study the important 
problem of boundary conditions (Hui et al. 1984; Jenkins & Richman 1986; Gutt & 
Haff 1988; Richman 1988; Richman & Chou 1988; Haines, Jenkins & Richman 
1988). The key difference in the case of granular flows is the inclusion of energy 
dissipation which occurs during collisions and sliding contacts between rough, 
inelastic, granular particles. Some important results that  emerge from these granular 
kinetic theories are the evolution equations for the particle velocity fluctuations and 
spins. The kinetic energy associated with the translational velocity fluctuations has 
been expressed in terms of a ‘granular temperature’, which has an obvious analogy 
with the definition of the temperature in a gas a t  the molecular level. Because of the 
significant collisional energy dissipation, shearing is essential to provide the energy 
necessary to maintain the velocity fluctuations ; otherwise the granular temperature 
quickly decays. This is quite unlike what happens, for example, in a gas a t  the 
molecular level. 

During the same period, investigations of granular flows have been carried out by 
computer simulations (Campbell 1989 ; Campbell & Brennen 1985 ; Campbell & Gong 
1986; Walton & Braun 1986a, 6 ;  Walton et al. 1987; Walton, Kim & Rosato 1991; 
Hopkins & Shen 1988). These simulations have verified some of the general trends 
which emerge from the kinetic theory analyses, but, more importantly, they have 
also revealed or confirmed some of the limitations of these kinetic theories and 
located the flow regimes where the assumptions used in the analyses are inappropriate 
or break down. Examples of such shortcomings are the assumption of isotropy in the 
particle radial distribution function at  contact and the associated inability to predict 
particle ‘layering ’ in high concentration shear flows, the assumption of isotropy of 
the granular temperature, etc. 

The kinetic theories have been applied to solve problems in which the spatial 
and/or temporal variations in the flow field properties were assumed to be (at  most) 
gradual, and the possibility of ‘ turbulent-like ’ fluctuations has been neglected. Thus, 
these analyses have used transport coefficients analogous to laminar flow Newtonian 
viscosities, thermal conductivity, etc. Until recently, it appeared that computer 
simulations gave results that were in the main consistent with the kinetic theories 
and that the differences were due to oversimplifications in the kinetic theories. Most 
of these computations made use of relatively small numbers of particles and used 
periodic boundary conditions in an attempt to extend the flow field region 
effectively. However, there is a small, but growing body of evidence (Hopkins & 
Louge 1991; Savage 1991; Walton et al. 1991) which suggests that  under some 
circumstances the flow fields can depart significantly from the smooth slowly varying 
ones often assumed. 

For example, Savage (1991) found in computer simulations of sheared spherical 
particles in narrow gaps between rough walls (made up particles similar to those in 
the shear gap), that  in some flow regions turbulent-like flow occurred. For nearly 
elastic particles, a t  higher concentrations, the stresses showed strong time-dependent 
fluctuations ; the power spectra of these fluctuations had the form of l/f noise where 
f is the frequency (Schlesinger & West 1988; Voss 1988). The dynamical system in 
these computer simulations was also found to be a ‘ chaotic ’ one. The granular flow 
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stresses are similar in certain respects to the Reynolds stresses in a turbulent fluid. 
They depend upon the magnitude of the particle velocity fluctuations, and hence the 
kinetic energy of the velocity fluctuations. The l/f form of the power spectra of the 
normal stresses (and hence the kinetic energy of the fluctuations) suggests an analogy 
with the ‘ Kolmogorov-Obukov ’ -8 law for fluid turbulence. The observed temporal 
coherence implies the formation of associated spatial structures. Apparently similar 
stress fluctuations have been observed in shear cell laboratory experiments by 
Savage & Sayed (1984). 

Recently, Hopkins & Louge (1991) have performed computer simulations of two- 
dimensional granular flows of uniform, smooth, inelastic, circular disks involving 
large numbers (up to several thousands) of particles. They examined the 
concentration field using Fourier analysis and found the formation of inhom- 
ogeneities, the size and strength of which depended upon the particles’ coefficient 
of restitution, mean solids fraction and the size of the computational region. 

It is interesting to note recent work on the development of structures in other areas 
involving disperse systems. Cluster formation can be seen in computer simulations 
(Brady & Bossis 1988) and in experiments (Barnes 1989) of low-Reynolds-number 
sheared suspensions. Internal structures also form during the sedimentation of small 
bidisperse particles in viscous fluids (Weiland, Fessas & Ramarao 1984; Batchelor & 
Janse van Rensburg 1986) in fluidized beds (cf. Jackson 1985; Green & Homsy 1987) 
and three-phase flows (Kytomaa & Brennen 1990). It could well be that 
inhomogeneities in particulate flows are commonplace. 

The appearance of the clustering, stress fluctuations and other inhomogeneities 
suggests the study of the stability of granular shear flows which are subjected to 
small disturbances. Apart from the short and restricted analysis in Lun et al. (1984) 
which considered only density perturbations, no such investigations have been 
performed. The present paper examines the linear stability of a simple uniform shear 
flow of constant granular temperature and solids fraction when subjected to small 
perturbations in the mean flow velocity components, the granular temperature and 
solids fraction. Solutions for the growth (or decay) rates of the perturbations are 
determined by the use of computer algebra for disturbances of various wavelengths. 
Qualitative comparisons are made with the computer simulations of Hopkins & 
Louge (1991) which were performed for two-dimensional flows of smooth disks. 

2. Problem formulation and governing equations 
2.1. Conservation and constitutive equations 

We shall consider the linear stability of an unbounded flow at a constant shear 
rate r, uniform granular temperature T and uniform bulk density p. Thus, the 
undisturbed velocity field is given by 

U Y )  = U(Y)ex = rYezt (2.1) 

where ex is the unit vector in the streamwise z-direction. 
We make use of the conservation and constitutive equations developed in the 

kinetic theory of Lun et al. (1984). This theory included collisional as well as kinetic 
contributions to the transport properties and thus i t  can be used a t  both high- and 
low-solids fractions where these contributions are respectively dominant. The theory 
was derived for uniform, smooth, spherical particles of diameter t~ which were nearly 
elastic (i.e. the coefficient of restitution e x 1).  The analysis is in effect a perturbation 
about the perfectly elastic, high granular temperature, small shear-rate limit and the 
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FIGURE 1. Comparisons of granular temperatures determined from molecular dynamics computer 
simulations with kinetic theory (dashed line) of Lun et al. (1984) for a uniform shear flow. Both 
cases are soft-sphere simulations for a solids fraction v,, = 0.4712. (a )  e = 0.9; (6) e = 0.1. 

nearly elastic (small dissipation) condition is required for the theory to be consistent. 
For example, the assumed form of the velocity distribution function used in Lun et al. 
(1984) forces the granular temperature to be isotropic. While this is quite accurate 
for nearly elastic particles, it is inadequate for low values of e. To illustrate this, 
computations were performed using both ' hard-sphere ' and ' soft-sphere ' computer 
simulations similar to the approach described in Savage (1991), but with the 
Lees-Edwards (1972) periodic boundary conditions applied to induce a simple shear 
flow U(y) = ry. The components of the granular temperature were determined by 
taking the mean square of the components of the particle velocity fluctuations. For 
example, T, = (Ci), where C, = c,- U(y) is the z-component of velocity fluctuation 
and c, is the x-component of the instantaneous particle velocity c. Figure 1 compares 
some typical soft-sphere results (expressed in terms of the non-dimensional variables 
that are defined subsequently) of computations for 343 particles (an initial cubic 
array of 7 x 7 x 7 particles) having coefficients of restitution of 0.9 and 0.1, and a 
mean solids fraction u = 0.4712. At the higher value of e = 0.9 (figure 1) the granular 
temperatures are approximately isotropic (T, GZ Tu GZ T,  GZ T), but a consistent 
pattern is observed in that T, > Tu > T,. The hard-sphere and soft-sphere simulations 
give approximately the same results and the total granular temperature T = 
i(T, + Tu + T,) is only slightly larger than the isotropic value of T predicted for a 
uniform simple shear flow by the kinetic theory of Lun et al. (1984). Note that the 
temperature scale in figure l ( a )  is expanded and while the departures from 
uniformity over the width of the shear region are small, there is some suggestion of 
sinusoidal temperature variations. By averaging over longer times, for the cases 
involving relatively small numbers of particles and computational boxes of small 
lateral dimensions, it is usually possible to  eliminate the spatial variations. 
(Obviously a long averaging time will not always smooth things out ; if it could, there 
would be little point in the present stability analysis.) We have purposely averaged 
over moderate times in order to  reveal the presence of these small granular 
temperature variations which are similar to the sinusoidal perturbations studied in 
the present paper. At the lower value of e = 0.1 (figure 1 b ) ,  the strong anisotropy in 
temperature that emerges in the molecular dynamics computations is evident, while 
the Lun et al. (1984) kinetic theory prediction is lower than the total temperature T 
from the soft-sphere simulation. At low-solids fractions the anisotropies in 
temperature are even more pronounced for highly dissipative particles. (Note that 
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Richman (1989) has considered a kinetic theory to predict these kinds of temperature 
anisotropies for very inelastic particles in the limit of low-solids fractions.) The main 
purpose of these remarks is to point out that the stability analysis that follows should 
not be applied to highly dissipative particles, but is probably consistent only for 
moderate and high values of the coefficient of restitution e .  

The equations expressing the conservation of mass, momentum and energy are 
written in the usual form as 

dP -= - ~ Q - u ,  
dt 

du 
P& = Pg-Q*P,  (2.3) 

d T  
dt $&- = -p:Qu-Q.q--y.  (2.4) 

where u = ( c )  is the bulk velocity, p is the stress tensor, and g is the gravitational 
acceleration. The third equation involves %T = t ( C 2 ) ,  the specific kinetic energy of 
the velocity fluctuatipns (where C = c-  u),  the flux of fluctuation energy q and y ,  the 
collisional rate of energy dissipation per unit volume. 

Let us now introduce the following non-dimensional time and spatial coordinates 

G, 2, g, 2) = (rt, X / U ,  Y/U, z / u ) ,  (2.5) 
where (r is the particle diameter. The solids fraction (volume of solids per unit 
volume) is 

P 
PP 

v = -  

where pp is the mass density of the individual solid particles. The dimensionless 
velocity components in the 2-, d - ,  &directions are defined as 

(c, v", 8) = (i/ar) (u, 11, w), (2.7) 
and hence the primary non-dimensional mean shear flow is o(d) = U(y)/(ur) = 8. 

and rate of collisional energy dissipation are defined as 
The dimensionless granular temperature, stress, fluctuation kinetic energy flux 

Using the above non-dimensionalizations the conservation equations may be 
rewritten in dimensionless form as 

dv - dt"= -vQ*u, 

dii - 
dt" 

V- = vg-Q*P,  

(2.9) 

(2.10) 

(2.11) 
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All the equations that follow will use non-dimensional variables and for the sake 
of brevity in notation we shall henceforth omit the tildes. The constitutive relations 
for non-dimensional stress, translational fluctuation energy flux and the rate of 
collisional energy dissipation per unit volume are given by 

p = [F , ( v )T -a (v ,  T)V.u]I-F,(v,T)S, (2.12) 
= -K( V ,  T) VT, (2.13) 

where 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

+ y v 2 g o ( g  = F. (v) (9, (2.18) 

25 n 
K(v ,  T) = - 

16 ~ ( 4 1 -  337) go 

and / is thc identity tensor. The rate of shear tensor is defined as 

We use the expression proposed by Carnahan & Starling (1969) for the radial 
distribution function a t  contact 

s = ~(ui,j+uj,i)-~k,kSil. (2.20) 

(2.21) 

In  the above expression (2.13) for the flux of fluctuation kinetic energy q, the term 
given in Lun et al. (1984) that was proportional to Vv has been omitted, since, as Lun 
et al. point out, it is of higher order than the term proportional t o  VT. Taking (1 - e) 
to be a small parameter and retaining only first-order terms as suggested by Jenkins 
(1987 b)  we can make the following further simplifications 

F, (v )  = v(1+4vg,), (2.22) 

(2.23) 

(2.24) 

(2.25) 

and (2.26) 
24 

y =+l-e)v2gofi .  
7c2 
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2.2. Linearized small perturbation equations 
If we consider the above granular flow equations for the case of an unbounded 
uniform shear flow at constant solids fraction v and constant granular temperature 
T it is seen that the fluctuation kinetic energy equation (2.11) reduces to a balance 
between the shear work and y ,  the collisional energy dissipation rate per unit volume. 
This zeroth-order primary flow solution expressed in non-dimensional variables for 
a particular constant solids fraction uo is found to be 

F&JO) To = 
48(1-e)v:g0’ 

(2.27) 

recalling that the non-dimensional shear-rate is unity. 

such that 
We now consider small two-dimensional perturbations about the above solution 

u = U+u’(x, y , t )  = y+u’(x, y , t ) ,  v = v’(x,y,t),  w = 0; (2.30) 

u = V ~ + V ’ ( Z , Y , ~ ) ,  T = T,+T‘(x,y, t) ,  (2.31) 

P = Po+Pf(x ,y , t ) ,  4 = 40+qf(x,y, tL (2.32) 

(2.33) y = yo + y’(x, y, t ) ,  

where the primed quantities are small compared with those associated with the 
primary flow (subscripted 0 quantities). 

Substituting (2.30)-(2.33) into the conservation equations 
collecting first-order terms we obtain the following equations for 
quantities. 

(2.9)-(2.11) and 
the perturbation 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

Making use of (2.31), (2.32) and (2.22)-(2.24) in the stress tensor (2.12) we obtain 
the following expressions for the perturbation stresses 

(2.38) 

(2.39) 

(2.40) 
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undisturbed primary flow (vo, T,, etc.) or functions evaluated using those values. 
In  these equations the subscript 0 denotes dependent variables associated with the 

3. Stability analysis 
If we substitute the zeroth-order stress components (2.28) and (2.29) and the 

perturbation stresses (2.38)-(2.40) in the perturbation momentum and energy 

, 

We now consider possible solutions to  (2.34) and (3.1)-(3.3) for the perturbation 
solids fraction v’, velocities u’ and v’, and the perturbation temperature T. 

3.1. Shear-induced turning of wavenumber vector 

I n  a review of shear-flow turbulence, Phillips (1969) has discussed simple models (cf. 
Moffatt 1967) to consider the maintenance of disturbances or turbulent components 
interacting with the mean flow for (inviscid) incompressible, uniform shear flows. 
Some simple solutions had the form of Fourier modes in which the wavenumber 
vector was turned by the mean shear flow. We also note that in computer simulations 
of suspensions of particles, Brady & Bossis (1988) show clusters or bands (see their 
figure 6, p. 138) that were rotated ‘more or less en masse ’ owing to the presence of 
the mean shear. Here we shall examine the stability of similar modes of the form 

and kx(0 )  and k,(O) are the components of the wavenumber vector a t  the initial time 
t = 0. Note that the x-component remains constant a t  its initial value kx(0 )  but that 
the y-component varies linearly with time t .  The lines of constant phase move closer 
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FIGURE 2. Definition of coordinate system and rotation of wavenumber vector 
by action of mean shear. 

together with increasing time and rotate so that they become more parallel to the 
x-axis (see figure 2) .  Substituting (3.4) in the conservation equations (2.34) and 
(3.1)-(3.3) yields the following set of equations for the amplitudes i, C ,  G, and 5?. 

$ = -iv,(k,zi+k,G), (3.6) 

We now examine the initial growth (or decay) rates of the amplitudes f ,  C , 6 ,  and 
9 a t  time t = 0 for arbitrary initial values of components k,(O) and k,(O) of the 
wavenumber vector. For example, we can then write 

;=Jexp(- int) ,  zi=tiexp(-int), 

6 = v'exp (-int), T = Texp (-int), 
1 "  

(3.10) 

where fi, u', etc. are constants. Substituting (3.10) into (3.6)-(3.9) yields a system of 
four equations in the form (A - nI) X where X represents the four numbers J, u',v*, and 
p .  This system has non-trivial roots only if JA -nll = 0. When this is expanded it 
yields a fourth-degree polynomial characteristic equation for the complex wave 
frequency n. The real part of n is the wave frequency nr, and the imaginary part n, 
is the growth rate. We want to determine the most unstable modes that occur and 
hence we seek the largest value of the growth rate n,. The analysis is extremely 
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FIQURE 3. Litial growth rate n, versus the y-component of the initial wavenumber, k, (O) ,  for 
various constant values of the r-component of the initial wavenumber, k, (0) ,  and for a coefficient of 
restitution e = 0.8. Modes correspond to case of shear-induced turning of wavenumber vector. 
(a) v,, = 0.1, ( b )  vo = 0.3, (c) vo = 0.5. 

lengthy and complicated and was carried out using symbolic algebra packages. 
Initial studies were performed with REDUCE 3.3 (Hearn 1987, Rayna 1987) running 
on an Acorn Springboard RISC coprocessor board mounted in an MS-DOS 80386 
microcomputer. Even before the functions such as ao, Flo,  Fz0, etc. that appeared in 
(3.6)-(3.9) are written out in full and differentiations of them with respect to u and 
T are performed, the polynomial for n is hundreds of lines in length. In  these initial 
studies the subsequent numerical determination of the roots of the complex wave 
frequency n were determined with the symbolic computation package DERIVE 2.01 
(Rich, Rich & Stoutmeyer 1990) since it handles complex algebra and arithmetic 
nicely. This work was later checked using the symbolic package MATHEMATICA 

(Wolfram 1991) running on a NeXTstation ; this package was able to handle both the 
algebraic manipulation and the numerical evaluations effectively. 

Some typical results are shown in figure 3 for a coefficient of restitution e = 0.8 and 
for solids fractions uo = 0.1, 0.3 and 0.5. If the growth rate ni is positive, the 
perturbations will grow and the flow is unstable; if ni is negative, the flow is stable 
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and disturbances decay in time. The larger the (algebraic) value of n,, the more 
unstable (or the less stable) is the flow. Figure 3 shows the initial growth rate ni 
plotted versus the initial wavenumber component k,(O) for constant values of the x- 
component of wavenumber, k,(O), and for constant values of mean solids fraction v,,. 
Note that the flows are most unstable when the initial wavenumber vector 
components k,(O) x k,(O), i.e. when the initial wavenumber vector is inclined a t  
approximately in to the x-axis. It may also be seen that, in general, when the initial 
wavenumber vector is inclined somewhat greater than in (i.e. when k,(O) > k,(O)), 
the flow becomes more unstable with increasing time as the wavenumber vector is 
rotated by the mean flow and k, decreases (cf. (3.5)). When the initial wavenumber 
vector is inclined a t  an angle somewhat less than in with respect to the z-axis (i.e. 
when k,(O) < k,(O)) ,  the flow becomes more stable with increasing time. Similar 
behaviour is found for other values of e. For this case of e = 0.8, it may be seen by 
comparing figures 3 (a) ,  3 ( b )  and 3 ( c )  that for the most part the flows tend to be more 
stable a t  very high- and low-solids fractions and least stable a t  moderate 
concentrations. 

It should also be noted that in almost all cases considered, n, (the real part of the 
complex frequency n) was zero, corresponding to waves with a zero phase velocity 
(i.e. ‘standing waves’ whose wavenumber vector is rotated by the mean shear flow). 

Figure 4 shows the (algebraically) largest values of the growth rate ni plotted 
versus solids fraction for constant values of initial wavenumbers k,(O) = k,(O) which 
were seen to be the approximate conditions for the flows to be the most unstable or 
least stable. Results are shown for three values of coefficient of restitution ; e = 0.9, 
0.8, and 0.5. As was noted previously, it is seen that the flows tend to be most 
unstable for long wavelength disturbances and stable for short wavelength 
disturbances. Figure 4 shows again that, in general, for constant values of k,(O) = 
k,(O), the flows are most unstable a t  moderate values of solids fractions and tend to 
be more stable a t  both high and low concentrations. There is a small dependence of 
n, on coefficient of restitution e.  At larger wavelengths, decreasing e increases the 
tendency for the flow to be unstable. 

We can understand physically why flows might be most unstable when the 
wavenumber vector of the perturbations is inclined at in to the x-coordinate axis if 
we recall that  the compressive axis of the present simple shear flow is aligned at in 
to the x-coordinate axis and the extensional axis is oriented in from it. We can 
visualize how discrete particles would tend to be squeezed together so as to collect 
along the compressive axis and be ‘pulled apart ’ along the extensional direction. 
There would be a tendency to  develop bands, the axes of which would be inclined a t  
in from the x-axis. The computer simulations of Brady & Bossis (1988, cf. figure 6, 
p. 138) clearly show the development of these kinds of bands. They noted that the 
microstructure appeared to be rotated ‘more or less en masse’ by the mean shear. 
This appears to  be much like the shear-induced turning of the wave modes that have 
been considered here. 

The above results and trends seem to be consistent with the simulations of 
Hopkins & Louge (1991) as much as the trends in their simulations can be discerned 
clearly. However, one must be careful to distinguish between the present results 
which predict the likelihood of linear stability (or instability) and the results of 
Hopkins & Louge which determined the extent (and intensity) of well-developed ( 2 )  
inhomogeneities in the flows. Obviously the two situations are related, but not 
necessarily the same. Hopkins & Louge stated that wavelength of the microstructures 
(inhomogeneities) generally increased with the size of the periodic computational 
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FIGURE 4. Growth rate n, versus solids fraction vo for constant values of initial wavenumber 
components k,(O) = k,(O) and coefficient of restitution e ;  ( a )  e = 0.9, ( b )  e = 0.8, ( c )  e = 0.5. 

domain ; and that as the size of the periodic computational domain decreased the 
microstructures tended to disappear. Furthermore, increasing e tended to forestall 
the growth of the microstructures. 

The use of periodic boundary conditions in the computer simulations will 
effectively ‘fix ’ the wavelength. Since, in general, the long wavelengths are predicted 
to be the most unstable, i t  would seem likely that the dominant wavelength of the 
unstable perturbations would correspond to the size of the periodic box used in the 
simulations. Thus, computations performed using ‘ small boxes ’ and small numbers 
of particle can be stable, while ‘larger’ boxes involving larger numbers of particles 
are more likely to be unstable. Superposition of plane wave Fourier modes in the case 
of the shear-induced wavenumber turning case could produce the complex structures 
that seem to be present in the disk simulations of Hopkins & Louge (1991). At low 
density the observed non-homogenieties appear to be quite strong ; it is possible that 
they might be generated or enhanced by nonlinear interactions. 
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4. Concluding remarks 
The present work has examined the linear stability of a uniform granular shear 

flow of inelastic spherical particles. It should be noted that only some particular 
forms of perturbation solutions have been examined. There may be others similar to 
those considered in studies of the stability of viscous fluid boundary layers (e.g. 
Betchov & Criminale 1967). 

Flows a t  high mean solids fraction often involve shearing in layers of only a few 
particle layers thick. Under these conditions the instabilities and resulting 
inhomogeneities in density, granular temperature and velocities of the kind 
considered in the present paper might not be so likely. However, other kinds of 
inhomogeneities, such as spatial and temporal stress fluctuations, particle clustering 
and break-up which result in mean density fluctuations, the formation of columns of 
particles in contact, jamming and bridging of particles, occur. They can be observed 
in computer simulations and also inferred from physical shear cell experiments 
(Savage & Sayed 1984). On the other hand, for flows a t  lower densities when the shear 
regions are much thicker, the instabilities discussed in the present paper are expected 
to significantly affect the overall flow dynamics. Flows at low mean solids fractions 
also permit the possibility of density fluctuations of larger magnitude than are 
possible a t  high mean densities. This increases the likelihood of important nonlinear 
effects. It would be interesting (but certainly very difficult) to  consider nonlinear 
wave interactions in these kinds of granular flows. 

The present work has considered only the onset of instability in a granular shear 
flow. Both computer simulations and shear cell experiments indicate that 
fluctuations of significant magnitude in stresses, solids fraction, etc. can be 
maintained. There are not only the obvious short-time fluctuations associated with 
the individual particle motions, but also those which involve longer timescales. Here 
we can think of analogies to the fine grain turbulence and large-scale coherent 
structures that are observed in turbulent fluid flows (Liu 1990). Previous solutions 
to boundary-value problems (using constitutive relations derived from granular flow 
kinetic theories) have been based upon the assumption of homogeneous slowly 
varying flow fields. Some attempts should be made to include turbulent-like 
fluctuations (whose spatial and temporal scales are larger than those associated with 
the individual particle fluctuations) in the derivation of constitutive equations and 
examine the effects of their inclusion on quantities like mean stresses, energy fluxes, 
etc. 

This work was supported by an Operating Grant from the Natural Sciences and 
Engineering Research Council of Canada (NSERC). 
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